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Based on numerical analysis of experimental data, we find simple phenomenological 
formulas for the magnetic moments of the proton and neutron with 10 valid digits. We 
also obtain a compact formula for the relation of the electron’s anomalous moment to 
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dependencies of the neutron and proton masses in electron mass units as functions with 
arguments π  and fine-structure constant. 
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Short Content 
 

Modern ideas presume that the nucleon has a complex structure. Accordingly, one 
should not expect simple and exact formulas for the above quantities in future theory. 
Still, if we suppose that future theory possesses hidden symmetry then there possibly 
exist simple formulas for the magnetic moments, since in quantum theory, symmetries 
normally generate comparatively simple formulas involving integer numbers. The 
hypothesis can be verified by a simple, but not at all obvious, method of numerical 
analysis of the experimental data. 

Based on it, we find simple phenomenological formulas for the magnetic 
moments of the proton and neutron with 10 valid digits. We also obtain a compact 
formula for the relation of the electron’s anomalous moment to the summary magnetic 
moment of the nucleon with 11 valid digits, and propose dependencies of the neutron 
and proton masses in electron mass units as functions with argument π. 
 
 
 
1. Introduction 
 
The latest experimental data for the proton’s and neutron’s magnetic moments yield 10 
digits [1].            

 The magnetic moment of the proton in Bohr magneton units is 
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µp=1.521032210(12) ×10-3, (1) 

while that of the neutron 
µn=1.04187563(25). (2) 

  
 Modern ideas presume that the nucleon has a complex structure. Accordingly, one 
should not expect simple and exact formulas for the above quantities in future theory. 
Still, if we suppose that future theory possesses hidden symmetry then there possibly 
exist simple formulas for the magnetic moments, since in quantum theory, symmetries 
normally generate comparatively simple formulas involving integer numbers. The 
hypothesis can be verified by a simple, but not at all obvious, method of numerical 
analysis of the experimental data (1 and 2). 
       Theoretical physicists even now use phenomenological formulas without a 
theoretical foundation, yet. However, in macroscopic electrodynamics, one can guess the 
structure of a formula in certain problems even before solving Maxwell’s equations 
finally. In particular, we can often predict a formula in a complicated calculation of the 
dynamics of particle beams in accelerators on the basis of the following simple, but 
efficient, physical ideas [2]: Parameter dimension is important, the dimensionless 
parameters are of the same order, and after physical simplifications and transformations, 
the required formula possesses an algebraic structure. 
       These ideas are generally known, and used in the present paper to deduce simple 
algebraic formulas for the proton’s and neutron’s magnetic moments. Recall that the 
Balmer and Sommerfeld formulas (and not only they) for the spectrum of the hydrogen 
atom were derived similarly. The former accelerated the development of quantum 
mechanics, while the latter that of creation of relativistic quantum theory. 
       We make use of the mathematical constants ,2, 3, 5π  and exp[1]  that are 
frequently employed in quantum electrodynamics. Besides the above foundations, we 
require that the coefficients, which normally arise in quantization, should be integers or 
fractions of integers, what involved a very strong limitation in numerical analysis. These 
formulas are of exactly such structure in quantum mechanics and quantum 
electrodynamics to refer monographs. The Balmer and Sommerfeld formulas possess the 
same structure. It is not at all obvious that a complicated problem set in the present 
paper can be solved, however. 
       We regard a formula as compact if the number of the original constants used is 
less (or substantially less) than that of valid digits. E.g., one number, 2, is used to 
calculate the Bohr magneton, whereas 3 valid digits, 2.00, are obtained. That much 
accuracy permitted Bohr to accept the value 2 as valid. Three parameters, 2, α and π, are 
involved in the Schwinger formula for the first approximation to the anomalous 
magnetic moment of the electron in Bohr magneton units 

 
δµe ≈ α /2π ≈ 1.1614×10-3, (3) 
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while 5 valid digits after the decimal point are obtained [3, 4]. If we use a Taylor series 
in calculating exp[1] with 12 valid digits, then we obtain 15 addends. Taylor’s algebraic 
formula is not compact by our definition, i.e. that  cannot be accepted here. 
       However surprising it may seem, considering more than 50,000 formulas led us to 
simple algebraic formulas for the magnetic moments of the proton and neutron with 10 
valid digits. Applying this method to the masses of the proton and muon also yielded 
simple relationships with 12 valid digits. Meanwhile, the electron’s anomalous magnetic 
moment is connected to the moments in eq.(1 and 2) by a simple relationship which 
provides for a higher accuracy than the one resulted from quantum electrodynamics. 
       From the moments, we now turn to other variables. We use the summary moment 
 

1390.1818022n pµ µ µ −

+ = + =  (4) 

and the relative moment 

rel
0.40652091103n

n p

µµ µ µ= =
+

. (5) 

 
        It is just for these quantities our extremely simple formulas arise. 
 
 
 
2. Relationship between summary magnetic moment µµµµ+  and mass of neutron 

  
We use the experimental value for mass of the neutron  

 
mn = 1838.6836605(11) (6) 

 
in the numerical analysis of  summary magnetic moment [1]. We should expect µ+   to be 
approximately inversely proportional to the neutron mass. When we try to find the 
multiplier by numerical analysis, we arrive at the formula 
 

[ ]
3

(2 2ехр 5 )nm
πµ+ −

=
+

.  (7) 

 
In substituting experimental values of  µ+  and mn    for equation (7) to hold we 

should substitute 4.99998 for the 5, which confirms that the formula holds. If we 
calculate µ+ , then we get 10 valid digits, viz., 

 
1 1) ( ) 390.181802182( cal n pµ µ µ− −

+ = + = . 
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  It follows from equation (7) that the factor of proportionality (without taking the 
small addend into account) equals 3π/2. We make use of  7 parameters in equation (7), 
whereas there are 3 more valid figures (probably, 5 more, as follows from Chapter 5). 
By the selected criterion, the formula is compact. 
 
 
 
3. Dependence of neutron relative magnetic moment µµµµrel     on fine structure 

     constant α  
          

The fine structure constant α found experimentally as 
 

α -1=137.035999074(44)  (8) 
(see [1]). 
 Following the above approach, using numerical analysis, we can arrive at the 
following formula for the neutron’s relative magnetic moment 
 

rel ( )
5(8 )

12 nm
ααπ πµ

+
= + +  .  (9) 

 
 Substitution of the experimental values for µrel , mn and α from eq. (5, 6 and 8), 
respectively, in the above parameters yields 11.9997 in the small latter addend instead of 
12, and the formula structure is thus confirmed. Calculation of the neutron’s relative 
moment  

cal
0.406520911025n

n p
rel

µµ µ µ= =
+

 

 
yields 10 valid figures. If we calculate α -1 in terms of µrel  by equation (9) then that 
yields all the known digits, viz.,  
 

α -1cal =137.0359990741. 
 
 
 
4. Relative magnetic moment µµµµrel  as function of number ππππ5   

  
Moment µrel  is approximately equal to 2/5. Note that the value of a correction to 

2/5 is close to 2/π5 . To make it precise, we use the difference between the neutron’s and 
proton’s masses  

∆m = 2.53098805  (10) 
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(see [1]). 
 Then  

1/( relµ 2/5) ∆m relµ /3 π5/2 . (11) 

 If we substitute experimental values for ∆m and µrel on the left-hand side of 
formula (11), then for equation (11) to hold, we should substitute 2.00000003 for the 2 
on the right-hand side. 

If we calculate relative moment from equation (11) to the accuracy of 
measurements, then 

relcal
0.406520910879n

n p

µµ µ µ= =
+

. 

 
 
 
5. Inverse corrections relationship 

 
 Numerical analysis shows that the difference between the inverse corrections to 

relµ and ∆m with a good accuracy of 6 valid figures is equal to 8. More precisely, to the 

accuracy of measurement, the relationship 
 

5/(∆m-5/2) 1/( relµ -2/5)  8(12α2/3)  (12) 

holds. 

 If we substitute experimental values for ∆m and relµ  in the above formula, then 

we obtain 137.034 for α –1 . If we calculate µrel  in terms of α and ∆m by equation (12) 
then  

rel
0.406520911029n

n p

µµ µ µ= =
+

, 

while calculating ∆m in terms of µrel  and α yields all figures known experimentally, viz., 
∆mcal = 2.530988050003. 

 
 
 
6. Relationship between nucleon summary moment  µµµµ+  and electron’s anomalous 

magnetic moment δδδδµe 
 
The difference to a good accuracy between inverse values of µ+  and δµe with /2 π  as a 
coefficient is equal to number 2. To make this relationship more precise, we introduce a 
small addend, which is linear in terms of the moments. As a result of numerical analysis, 
we get 
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2 /πδµe1/µ+  2 + δµe + µ+/ 10.  (13) 
 

 Substituting experimental values of the electron’s anomalous magnetic moment 
  

δµe= 1.15965218076(27)×10-3  (14) 
 

(see [1]) and the summary moment µ+  from datum (4) into equation (13) with a small 
addend on the right-hand side generates 10.0005 rather than 10. If we take µ+ from 
Chapter 1 and calculate the electron’s anomalous magnetic moment, then we get at least 
14 valid digits after the decimal point, viz., 
 

δµecal= 1.1596521807579×10-3, 
 

which is 4 digits better than what quantum electrodynamics offers [4]. 
 Without the small addend on the right-hand side in equation (13), this formula 
yields 8 valid digits after the decimal point. The total one allowing us to predict 10 valid 
digits for summary moment 

µ+cal= 390.181802181, 
 

which well agrees with the result obtained in Chapter 2.   
 
 
 
7. Ratio of mass of proton to that of electron 

 
Equation (11) suggests that to construct the proton’s dimensionless mass, we should 
make use of π5 . In fact, the mass is approximately 6π5 with 5 valid digits. More 
precisely,  

5
2)

16
16 4/3) 2( /(p

n

m
m

π
ππ

= +
 
 − −

,  (15) 

 
where the 5 parameters (2, 3, 5, π and mn) are involved. 

 If we find mn from  equation (15) by substituting the experimental value of  
 

mp = 1836.15267245(75)  (16) 
 

(see [1]) , then we get number1838. Calculation of  mp leads us to 12 valid digits, viz., 
 

mpcal = 1836.152672450232. 
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 8. Neutron dimensionless mass  
 
The main component of the formula is 2π(3π4+ 1/ 6  ), which yields 7 valid digits. The 
following formula, making the latter quantity more precise, is simple too, viz.,   

2

4 12
6 1/(8exp 1 )

3
n

m π π
 
 = + 

      
−

 .  (17) 

 
Substituting the experimental value from data (6) in equation (17) yields 2.7183 

rather than exp[1]. Calculation of mass 
mncal= 1838.683660508 

yields all valid digits. 
 

 
 
9. Mass difference ∆∆∆∆m 
 
Found formulas involve the mass difference. For them to involve none other than 
constants, we express ∆m  in terms of the fine structure constant α , assuming that ∆m 
is proportional to α2 . We get a simple formula with 10 valid digits  

2 2

28

[ ]

5
1 1)(

m α
α

π
π π∆

− +
=  (18) 

 
by numerical analysis. 
  Substituting the value of α  from equation (8) in formula (18) yields 
 

∆mcal = 2.530988045475. 
 
 
 
10. Relationship between neutron mass and fine-structure constant 
 
Formula is very simple, viz., 
 

1

4

1
6 5

( 2 10 )p
n

m
m α

α
−=

− +
− .  (19) 

 
Substituting the experimental values from eq. (4 and 16) in formula (19) with small 

addend under root yields 137.1 rather than α-1. Calculation of mass mn:  
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mncal=1838.683660499 

 
yields all valid digits. 
 
 
 
Conclusions  

 
 Applying the numerical analysis used to the main algebraic formulas of quantum 

electrodynamics [4] shows that any comparatively simple formula can be restored if 
sufficiently many valid digits and constants employed are known. If we apply the 
method to precisely measurable in experiments quantities, then we unexpectedly arrive 
at compact algebraic formulas for magnetic moments and mass ratios. These formulas 
are useful in studying various models in nuclear physics when high accuracy of 
calculations is required. Formula (7) for summary moment is extremely simple, which 
enables us to predict 2 more valid digits, taking into account the accuracy of the 
neutron’s mass measurement. 
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