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Based on numerical analysis of experimental da&fimd simple phenomenological
formulas for the magnetic moments of the proton magtron with 10 valid digits. We
also obtain a compact formula for the relationhe &lectron’s anomalous moment to
the summary magnetic moment of the nucleon withvalld digits, and propose
dependencies of the neutron and proton massesdtr@ mass units as functions with
argumentsr and fine-structure constant.
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Short Content

Modern ideas presume that the nucleon has a complgsture. Accordingly, one
should not expect simple and exact formulas forabeve quantities in future theory.
Still, if we suppose that future theory possessdddm symmetry then there possibly
exist simple formulas for the magnetic momentsgesim quantum theory, symmetries
normally generate comparatively simple formulasolawng integer numbers. The
hypothesis can be verified by a simple, but noalatbvious, method of numerical
analysis of the experimental data.

Based on it, we find simple phenomenological fomsulfor the magnetic
moments of the proton and neutron with 10 validitdig\Wwe also obtain a compact
formula for the relation of the electron’s anomaounoment to the summary magnetic
moment of the nucleon with 11 valid digits, andgose dependencies of the neutron

and proton masses in electron mass units as funsctvth argumentz

1. Introduction

The latest experimental data for the proton’s agatnon’s magnetic moments yield 10
digits [1].
The magnetic moment of the proton in Bohr magneituts is
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/,lp:1.521032210(123t10'3, (1)
while that of the neutron i
1,=1.04187563(25). (2)

Modern ideas presume that the nucleon has a camplecture. Accordingly, one
should not expect simple and exact formulas forabeve quantities in future theory.
Still, if we suppose that future theory possessdddm symmetry then there possibly
exist simple formulas for the magnetic momentsgesim quantum theory, symmetries
normally generate comparatively simple formulasolawng integer numbers. The
hypothesis can be verified by a simple, but noalatbvious, method of numerical
analysis of the experimental data (1 and 2).

Theoretical physicists even now use phenatogical formulas without a
theoretical foundation, yet. However, in macroscagectrodynamics, one can guess the
structure of a formula in certain problems evenobefsolving Maxwell’'s equations
finally. In particular, we can often predict a farla in a complicated calculation of the
dynamics of particle beams in accelerators on #mssbof the following simple, but
efficient, physical ideas [2]: Parameter dimensisnimportant, the dimensionless
parameters are of the same order, and after plsnoplifications and transformations,
the required formula possesses an algebraic steuctu

These ideas are generally known, and usdakeipresent paper to deduce simple
algebraic formulas for the proton’s and neutron'agmetic moments. Recall that the
Balmer and Sommerfeld formulas (and not only tHeyXhe spectrum of the hydrogen
atom were derived similarly. The former accelerated development of quantum
mechanics, while the latter that of creation ohtiglstic quantum theory.

We make use of the mathematical constaf®ts/3/5n and exp[l] that are
frequently employed in quantum electrodynamics.idesthe above foundations, we
require that the coefficients, which normally ansequantization, should be integers or
fractions of integers, what involved a very stréingjtation in numerical analysis. These
formulas are of exactly such structure in quantunecmanics and quantum
electrodynamics to refer monographs. The BalmerSormdmerfeld formulas possess the
same structure. It is not at all obvious that a glicated problem set in the present
paper can be solved, however.

We regard a formula as compact if the nundfehe original constants used is
less (or substantially less) than that of validitdige.g., one number, 2, is used to
calculate the Bohr magneton, whereas 3 valid digit80, are obtained. That much
accuracy permitted Bohr to accept the value 2 hd.vehree parameters, &,andz, are
involved in the Schwinger formula for the first apgpimation to the anomalous
magnetic moment of the electron in Bohr magnetatsun

Sue~a 2~ 1.161410°%  (3)
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while 5 valid digits after the decimal point aragahbed [3, 4]. If we use a Taylor series
in calculating exp[1jvith 12 valid digits, then we obtain 15 addendsyldis algebraic
formula is not compact by our definition, i.e. thednnot be accepted here.

However surprising it may seem, considermage than 50,000 formulas led us to
simple algebraic formulas for the magnetic momentdhe proton and neutron with 10
valid digits. Applying this method to the massestlod proton and muon also yielded
simple relationships with 12 valid digits. Meanvehithe electron’s anomalous magnetic
moment is connected to the moments in eq.(1 andy23) simple relationship which
provides for a higher accuracy than the one res@ittan quantum electrodynamics.

From the moments, we now turn to other \deiss We use theummarymoment

U, =|h|+ 4, =390.1818022 (4)
and therelative moment

_ ]
oot Tl g~ 0.4065209110.  (5)

It is just for these quantities our extrégr@mple formulas arise.

2. Relationship between summary magnetic moment. and mass of neutron

We use the experimental value for mass of the aputr
my, = 1838.6836605(11) (6)
in the numerical analysis of summary magnetic marfi. We should expegt. to be

approximately inversely proportional to the neutnmass. When we try to find the
multiplier by numerical analysis, we arrive at tbemula

_ 3T
Hs (2m, ++/2exp[-9]) )

In substituting experimental values @f. andm, for equation (7) to hold we
should substitute 4.99998 for the 5, which confirthat the formula holds. If we
calculatew. , then we get 10 valid digits, viz.,

(1,)2 = () + 1) =390.18180218.



It follows from equation (7) that the factor abportionality (without taking the
small addend into account) equai¥ We make use of 7 parameters in equation (7),
whereas there are 3 more valid figures (probablynadse, as follows from Chapter 5).
By the selected criterion, the formula is compact.

3. Dependence of neutron relative magnetic momepée; on fine structure
constanta

The fine structure constamtfound experimentally as

o 1=137.035999074(44) (8)
(see [1]).
Following the above approach, using numerical y@mis| we can arrive at the
following formula for the neutron’s relative magieathoment

Mo =5(8+ 77)0""% - 9)

Substitution of the experimental values fgg , m, anda from eq. (5, 6 and 8),
respectively, in the above parameters yields 17.99%he small latter addend instead of
12, and the formula structure is thus confirmedic@ation of the neutron’s relative
moment

u =L 6 40652001102
relcd |ﬂn|+/jp

yields 10 valid figures. If we calculate ™ in terms ofi4e by equation (9) then that
yields all the known digits, viz.,

o 'a=137.0359990741.

4. Relative magnetic momenje as function of number 77

Moment t4 IS approximately equal to 2/5. Note that the valfi@ correction to
2/5 is close to 2P. To make it precise, we use the difference betwkemeutron’s and
proton’s masses

Am = 2.53098805 (10)



(see [1)]).
Then
(U 2/5) Ampd 130 TE/2 . (11)

If we substitute experimental values fhm and (4 on the left-hand side of
formula (11), then for equation (11) to hold, wewsld substitute 2.00000003 for the 2
on the right-hand side.

If we calculate relative moment from equation (1tb) the accuracy of
measurements, then

u =l 6 40652001087
relcal |'un|+ U,

5. Inverse corrections relationship

Numerical analysis shows that the difference behwtbe inverse corrections to
U andAmwith a good accuracy of 6 valid figures is equaBtdlore precisely, to the

accuracy of measurement, the relationship

5/(AM5/2) 1I( ., -2/5) O 8(12a°/3) (12)
holds.
If we substitute experimental values fdm and 4, in the above formula, then
we obtain 137.034 far ~'. If we calculatey in terms ofa andAm by equation (12)
then

TR 5l 40652091102,
el + 4
while calculatingAm in terms ofi4e anda yields all figures known experimentally, viz.,

Am, = 2.530988050003.

6. Relationship between nucleon summary momeng. and electron’s anomalous
magnetic momentdlle

The difference to a good accuracy between invesees oft/, anddpwith V2/77 as a
coefficient is equal to number 2. To make thistrefeship more precise, we introduce a
small addend, which is linear in terms of the motseAs a result of numerical analysis,
we get



J2 It SUL/H: [ 2 + Qe+ HU4/10. (13)
Substituting experimental values of the electr@memalous magnetic moment
du= 1.15965218076(2%¥)1L0° (14)

(see [1]) and the summary moment from datum (4) into equation (13) with a small
addend on the right-hand side generates 10.000&rréhan 10. If we takes from
Chapter 1 and calculate the electron’s anomalognetec moment, then we get at least
14 valid digits after the decimal point, viz.,

Sleca= 1.159652180753.0°,

which is 4 digits better than what quantum elecgtr@anics offers [4].

Without the small addend on the right-hand sidegunation (13), this formula
yields 8 valid digits after the decimal point. Tio¢al one allowing us to predict 10 valid
digits for summary moment

Hicar 390.181802181,

which well agrees with the result obtained in Ckaft

7. Ratio of mass of proton to that of electron

Equation (11) suggests that to construct the pietdimensionless mass, we should
make use of7? . In fact, the mass is approximatelyr6éwith 5 valid digits. More
precisely,

1
= 6775 ,
T ' 16] (71— 4/3)- 27/ my,)? |

(15)
where the 5 parameters (2, 3y5andm,) are involved.
If we find m, from equation (15) by substituting the experina¢malue of
M, = 1836.15267245(75) (16)
(see [1]) , then we get number1838. Calculatiomfleads us to 12 valid digits, viz.,

Mhca = 1836.152672450232.



8. Neutron dimensionless mass

The main component of the formula g(&r'+ 1//6 ), which yields 7 valid digits. The
following formula, making the latter quantity mgueecise, is simple too, viz.,

1

\/[6—1/(8exp[ 15]

Substituting the experimental value from data {®)eguation (17) yields 2.7183
rather than exp[1]. Calculation of mass

Myca- 1838.683660508

m =27, 37 + (17)

yields all valid digits.

9. Mass differenceAm

Found formulas involve the mass difference. Fomth® involve none other than

constants, we expreddn in terms of the fine structure constant assuming thaAm
is proportional tax*. We get a simple formula with 10 valid digits

_ 578a2
o= (18)

by numerical analysis.
Substituting the value of from equation (8) in formula (18) yields

Am, = 2.530988045475.

10. Relationship between neutron mass and fine-stcture constant
Formula is very simple, viz.,

1

_g/(mp—2+10a)= . (19

m,

Substituting the experimental values from eq. (4 &6) in formula (19) with small
addend under root yields 137.1 rather thdnCalculation of masg,:
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Mhca=1838.683660499

yields all valid digits.

Conclusions

Applying the numerical analysis used to the madgelaraic formulas of quantum
electrodynamics [4] shows that any comparativeiyipde formula can be restored if
sufficiently many valid digits and constants em@dyare known. If we apply the
method to precisely measurable in experiments giemtthen we unexpectedly arrive
at compact algebraic formulas for magnetic momeants mass ratios. These formulas
are useful in studying various models in nucleayspts when high accuracy of
calculations is required. Formula (7) for summargnment is extremely simple, which
enables us to predict 2 more valid digits, takingpiaccount the accuracy of the
neutron’s mass measurement.
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